Cell injury

Response of cell to injury

Response of cell to injury

Adaptation

Damage

- Reversible
- Irreversible

Adapted - Normal - Injured Cells

Cell injury

- Reversible cellular morphological and functional changes accompanied with the accumulation of metabolites or other substances in a cell damaged by preceding injury.
- Resulting from metabolic disturbances due to mild injuries.
- Occurs in cells having high metabolic activity and rich in mitochondrial enzymes such as <u>liver cells</u>, <u>Kidney tubules</u> and cardiac muscles.

INTRODUCTION

CELL INJURY:-

Cell injury is defined as a variety of stresses a cell encounters as a result of change in its internal and external environment.

Causes of Cell Injury

- Oxygen deprivation (hypoxia or ischemia)
- Physical Agents (trauma)
- Chemical agents and Drugs
- Infectious Agents
- Immunologic Reactions
- Genetic Derangements
- Nutritional Imbalances

Types of cell injury

Intracellular accumulations

- Water
- Proteins
- Fatty change
- Carbohydrates
- pigments

Extracellular accumulations

- Calcium
- Amyloid
- Uric acid & ureate crystals

Both intra&extracellular accumulation

- Mucin
- Hyaline

PROCESSES OF ACCUMULATIONS

- 1. Production of a normal endogenous substance at normal or increased rate, but the rate of metabolism is inadequate to remove it.
- e.g., fatty liver, reabsorption protein droplets in tubules of kidney

- 2- Accumulation of an abnormal endogenous substance due to defects in protein folding, transport & inability to degrade abnormal proteins efficiently.
- e.g., accumulation of mutated proteins in liver cells

- 3-Accumulation of normal endogenous substance due to inherited defect in enzymes required for metabolism of the substance.
- e.g., Lipid & Glycogen storage diseases
- 4. Accumulation of abnormal exogenous substance due to unavailability of enzymatic & transport mechanisms to degrade & transport it to other sites.
- e.g., Silicosis & Anthracosis

Water (cloudy swelling & hydropic degeneration)

Disturbances of osmolality and cell swelling **Cloudy swelling Hydropic Degeneration**

Disturbances of osmolality and water transport

Toxic substances

Cell membrane

Na enters and accumulates inside the cell and

K passes to the outside of the cell

water go inside the cell

Cloudy swelling

Hydropic degeneration

Influx of water (Water go inside the cell)

Swelling and rupture of mitochondria

Cloudy Swelling

Increased cellular viscosity
Increase of cellular osmotic pressure

Further accumulation of water

Swelling of endoplasmic reticulum and other cell organelles

Hydropic Degeneration

Cloudy swelling

Hydropic degeneration

Protein reabsorption droplets in renal tubular epithelium

Hyaline droplet degeneration (kidney)

hyalinized droplets in degenerating renal tubules

Metabolism of Fat

Fatty Change

Pathogenesis
Appearance of neutral fat in the cell
occur as a result of

Fat ____phanerosis _ breakdown of cell organelles unmetabolizable

fat due to

Impairment of protein synthesis
Increased mobilization of fat
from fat depots
Deficiency of lipotropic factor
cell damage

Liver Fatty change

Fatty change
Fat cells have a signet-ring appearance due to accumulation of neutral fat in the cytoplasm

Fat stains

 Can be demonstrated in fresh unfixed tissue by frozen section

Special stains of fat	Stained the fat (frozen sections)
Sudan III	Yellow
Sudan IV (Scarlet red)	Orange
Oil red O	Red
Osmic acid	Black
Sudan black B	Black
Nile blue sulfate	i-Fatty acid: bluish
	ii-Neutral fat reddish

Glycogen storrage disease (PAS stain)

Pathological calcification

 Extracellular deposition of calcium out side hard tissue (bone –teeth)

Dystrophic Calcification

old abscess * parasitic cysts * thrombi * tumors atherosclerosis * tuberculous nodules

Metastatic Calcification

low intake of Ca and P 🔆 Deficiency of vit. D 🔆 Excessive excretion of Ca lactating animals * diarrhoea*renal insufficiency

Hypocalcaemia

secondary hyperparathroidism

Hypervit. D Excessive absorption of Ca

Bone

Hypercalcaemia

bone lesions parathroid adenoma

calcification of soft tissue

Disturbance of pigment metabolism

Endogenous pigment

Bile pigment Haemoglobin* Haematin* Haemosidrin* Porphyrin Melanin Lipofuscin Ceroid pigment Exogenous pigment

Carbon particle
Dust particles
Carotenoids

* Iron-containing pigment

Jaundice (Icterus)

Presence of excessive amount of bilirubin (bile pigment): in the blood and discoloration of tissue

Haemolytic jaundice

Increased production of bilirubin due to excessive haemolysis of red blood corpuscles

Toxic jaundice

Hepatic cells are damaged and can not perform their function leading to accumulation of bilirubin

Obstructive jaundice

Obstruction of the normal flow of bile and reabsorption of retained bile in the blood

Formation of bile pigment

Foal (pleural cavity)
Icterus

Liver: Obstructive jaundice
Presence of yellow-green globular material in
small bile ductules in the liver

Liver: haemosiderosis

Liver: haemosidrosis
Accumulation of haemosidrin pigment in
hepatocytes and Kupffer cells (Prussian blue stain)

Melanosis

Deposition of melanin pigment in abnormal sites in the body

Pathogenesis

overptoduction of melanin by melanocytes

escape of the pigment outside the cells

phagocytosis of the pigment by

phagocytes (melanophores)

and their migration to different tissue and organs

Melanin pigment

Brown-black granular pigment in the melanocytes of the epidermis and macrophages of the dermis

Melanosis (lung)
localized black areas in the pulmonary tissue

Lung (Pig): Normal melanosis

Pneumoconiosis

Deposition of mineral dusts in the lung

Types

Anthracosis Deposition of carbon particles (macrophages - connective tissue of alveolar septa)

Silicosis Deposition of silicon dioxide crystals Asbestosis Deposition of asbestos (beads) Siderosis Deposition of iron dust

Effect

No effect (anthracosis)
Fibrosis (silicosis - siderosis)
Granulomatous reaction (asbestosis)

Lung Anthracosis

Deposition of carbon particles in the macrophages of hilar lymph node (of the lung)

Hyaline degeneration

It is intracellular and extracellular protein accumulation that display homogenous glassy pink appearance in H&E stain

Hyaline Change Hyaline degeneration

Tissue becomes grossly white, glassy, and dense and microscopically highly eosinophilic and homogenous

Connective tissue hyalinosis

Old scars
Corpus albicans
Arteriosclerosis
Chr.nephritis

Cellular hyalinosis

Renal hyaline casts
Corpora amylacea
Russell's bodies
Kratohyaline
Muscles

Spleen Hyaline change of splenic artery

Hyaline droplet degeneration (kidney)

hyalinized droplets in degenerating renal tubules

Corpora amylacea (prostate)
Hyalinization of desquamated epithelial cells
of the acini

Keratin Dystrophy

Hyperkeratosis

Excessive production
Thick str.corneum
Normal str.granulosum

Vit. A deficiency
Prolonged friction
Viral infection
Tumours
Poisoning

Parakeratosis

Deficient production
Thin str.corneum
Thickened str.granulosum

Zinc deficiency

Hyperkeratosis

Increased amount of keratin in squamous cell carcinoma

Parakeratosis (skin)
Increase in the thickness of stratum granulosum

Amyloidosis

It is a disease results from extracellular accumulation of abnormal protein (Amyloid)

Amyloidosis

Chronic wasting diseases
Chronic suppurative inflammation

Amyloid substance deposited outside the blood vessels

amyloid substance may be_

Abnormal immunoglobulins Antigen-antibody complex Abnormal plasma protein

Types

- Systemic amyloidosis
- Localized amyloidosis

Clinical picture

- Heart failure
- Renal failure
- Splenomegaly
- Hepatomegaly and hepatic failure
- Diabetes mellitus

Amyloidosis - Kidney
Infiltration of amyloid substances in the glomerulus
and interstitial tissue around blood vessels

Nose (horse): Amyloidosis

Infiltration of pink material in the subcutaneous tissue with many multinucleated giant cells

Gout Disturbance of nucleoportein metabolism

Gout

Clinically:
Acute arthritis
Soft tissue nodules
renal stone

Gout (kidney-fowl)
Needle-shaped ureate crystals in renal tubules

Mucin deposition

Intracellular (mucoid degeneration)

Extracellular (myxematous degeneration)

mucoid

- Accumulation of mucin inside cells which swell and become vacuolated with eccentric nuclei (signet – ring cells)
- Cell may rupture leading to extracellular pool of mucin (ghost-like cells)

myxematous

 It is the accumulation of mucin between c.t. fibers

Myxomatous degeneration in a patient With mitral valve prolapse